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Let T u and T~v be the transfer matrices of two vertex models corresponding to 
two sets of Boltzmann weights. The Baxter condition on Boltzmann weights was 
known to be sufficient for commutativity of T x and T~v for all N. We show that 
generically it is also necessary. 
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INTRODUCTION 

The most  impor tan t  device in the theory of  soluble lattice models of  
statistical mechanics is to imbed the transfer matrix of  the model  into a 
family of pairwise commut ing  transfer matrices. (1) Since the transfer matrix 
depends on the size N of  the lattice, it seems that  one needs to verify an 
infinite number  of  condit ions to check that  two transfer matrices TN and 
T~v commute  for all N. Baxter  in t roduced a finite number  of  local con- 
ditions which are sufficient for the commuta t iv i ty  of TN and T~v for all N 
(see Ref. 1 and the theorem below). These condit ions are written as a 
matrix equation,  and a well-known special case of  it is called the Y a n g -  
Baxter equation. Similar equat ions appear  in many  other  situations (see, 
e.g., Refs. 2, 4, 10). 

In this paper  we study the commutat iv i ty  of  transfer matrices in a 
fairly general context in relation with the matrix equat ion referred to above 
which we call the Baxter condition. Our  main result is that  under  some 
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technical assumptions the Baxter condition is also necessary for the com- 
mutativity of transfer matrices. 

The material of the paper overlaps with Ref. 9 where the same result is 
claimed. However, the proof there contains a gap at a crucial point. As the 
reader will see from the argument below, commutativity of transfer 
matrices is equivalent to a question in linear algebra which is of its own 
interest. In the second part of the paper we derive the Yang-Baxter 
equation from the Baxter condition. (A preliminary version of this paper 
appeared; Ref. 6. The referee's comments are gratefully acknowledged.) 

1. PRELIMINARIES 

We start by recalling the basic notions about the lattice models of 
statistical mechanics, putting them in a convenient form for our presen- 
tation. We consider only one class of lattice models, namely the vertex 
models on rectangular lattices with periodic boundary conditions. 

In a vertex model the spins live on the edges. Let m ~> 1 (resp. n >~ 1) be 
the number of spin states living on the horizontal (resp. vertical) edges. We 
denote the horizontal spin states by i , j  (1 <~ i, j < ~ m )  and the vertical ones 
by k , l  ( l<~k,l<<.n).  A vertex model is determined by m2n 2 numbers 
- oe < e(i, j ,  k, l) <~ oe where e(i, j ,  k, l) is the energy of an elementary con- 
figuration of spins (see Fig. 1). 

The other two classes of lattice models which are often considered in 
the literature are the spin models and the "interactions-round-a-face" 
models.(1) 
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Fig. 1. Elementary configurations in a vertex model. 
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For any such model we can find a vertex model (5) with the same 
partition function. In view of this, for the purpose of the present paper it 
suffices to study the transfer matrices for vertex models. 

Let M and N be the number of columns and the number of rows of a 
lattice and denote by t > 0 the normalized temperature. A configuration co 
of a vertex model is given by an assignment of spins to all edges of the 
lattice. The energy E(co) of a configuration is given by 

E(co) = ~ e(i, j, k, l) (1) 

the summation is taken over all elementary configurations (see Fig. 1) con- 
tained in co. The partition function of a model is given by 

Z(M, N) = ~ exp[  - t - lE(co) ]  (2) 
r o  

and the physical properties of a model are determined by the asymptotics 
of Z(M, N) when M and N go to infinity. 

Now we define the transfer matrix of a vertex model which is useful in 
studying the partition function. The numbers 

w(k, l[ i, j )  = exp[  - t-le(i, j, k, l)] 

are called the Boltzmann weights of the model. Denote by E ~ - C  m the 
space of horizontal spin states and by F ~ - C n the space of vertical spin 
states of a vertex model. The numbers w(k, I I i, j) are the matrix elements of 
an operator W on the space F |  E which we call the Boltzmann matrix of 
the model. By fixing a pair (k, l) of vertical spins, we determine the 
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Fig. 2. Elementary configurations in a spin model. 
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operator W~ on E whose matrix elements are W~(i, j) = w(k, II i, j). We call 
the n 2 operators W~ on E the horizontal Boltzmann matrices. In what 
follows we use the words matrix and operator as synonyms because the 
spaces we consider always have a canonical basis. For  instance, the space 
H M= | has a canonical basis labeled by M tuples (k 1 ..... kM), 
1 ~< kl,..., kM ~< n. The operator T on HM whose matrix entries are given by 

T~, 'M-tr[-W~l,..., W~%] 
1 , . - - ,  k M  - -  (3) 

is caUed the (row to row) transfer matrix of the model. It is straightforward 
to check that 

Z(M, N) = tr T N (4) 

Remark. The transfer matrix T defined by (3) is the row to row 
transfer matrix. Analogously one defines the column to column transfer 
matrix S on HN. All considerations of the paper are valid for the transfer 
matrix S as well. 

2. C O M M U T I N G  T R A N S F E R  M A T R I C E S  

Assume for simplicity of exposition that M = N and denote by T N the 
transfer matrix of the lattice of size N for a given model. A model is com- 
pletely determined by its Boltzmann matrix W acting on F |  E --~ C n | C m 
or, equivalently, by the n 2 horizontal Boltzrnann matrices W~, 1 ~< k, l ~< n, 
acting on E. Another model with the same number n, but with m' possibly 
different from m, is given by its Boltzrnann matrix W' acting on F |  E'  
C n | C m' and we denote its transfer matrix by T~v. Both TN and T~ act on 
the same space H N'~ @ u c n  and the problem is to find criteria on W and 
W' under which T N commutes with T~v for all N. 

For  l<<k, 14n we define the operators U~ and V~ on E|  
c m |  ''' by setting their matrix entries U~(i,i';j,j') and V~(i,i';~hj'), 
respectively, to be 

U~(i, i ' ; j , j ' )= ~ w(p, lfi, j) w'(k, p[i',j') 
p ~ l  

(5) 

and 

V~(i,i';j,j')= ~ w'(p, lli ' ,j ')w(k, pli, j) 
p = l  

(6) 
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T h e o r e m  1. Let W and W' be the Boltzmann matrices of two lat- 
tice models and let U~ and V~, 1 ~< k, l<~ n, be the two sets of operators on 
C~ | C m' defined by them. 

1. Assume that the operators U~, or V~, 1 ~<k, l~<n, have no nontrivial 
common invariant subspace. Then TN and T~v commute for all N if and 
only if there is an invertible operator R on cm| C m' such that for 
l<~k,l<~n 

RV'~ = V'~R (7) 

2. If (7) is satisfied then TN and T~v commute for all N without any other 
assumptions. 

To prove the Theorem we need the following Lemma, which explains 
the role of operators U~ and V~. 

I .emma. The matrix elements 

( TN T'u)~ii[~(~, and (T'N TN)~IIT.(~, 

of TN T'u and T~v T~v are given by 

(TNT~)~,...,~,N= tr[U ~ ~ ..... Uku]ZU 

, L :  tr[ V? 3 

respectively. 
Postponing the proof of the Lemma, we now prove the Theorem. 

(8) 

(9) 

Proof of the Theorem. By the Lemma, T N and T~v commute for all 
N if and only if for any N-tuples (kl,..., kx)  and (11,..., IN) 

t r [U~ ..... U~u ] = tr[V~,..., V~N3 (10) 

If (7) is satisfied then 

R[C%,..., R (11) 

implying (10) and providing the second assertion of the Theorem. 
Assume for concreteness that the operators U~, 1 <~k, l~<n, have no 

common invariant subspace. Consider the free algebras P(U) and P(V) 
over C generated by the symbols U~ and V~, respectively. Elements of P(U) 
(resp., P(V)) are the noncommutative polynomials p(U~i ) (resp., p(V~)) 
i=  1, 2,..., which, for brevity, we denote by p(U~) and p(V~), respectively. 
The correspondence 

V~-~U~, l<~k,l<~n (12) 
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obviously extends to the isomorphism of algebras 

~: P(V) -~ P(U) (13) 

given by ~[p(V~)]=p(U~).  Denote by M the full matrix algebra on 
C m | C m' ~ C ram' and let U and V be the subalgebras generated by U~ and 
V~, respectively. Matrix algebras U and V are the quotients of P(U) and 
P(V), respectively, and we want to show that $ descends to an algebra 
homomorphism 

f : V ~ U  (14) 

This is true if and only if any relation p(V~)= 0 as an operator o n  C ram' 

implies p(U~)=0 in the same sense. Assume the opposite, i.e., let p be a 
polynomial such that p(U~)#  0 but p(V~) = 0. Notice that (10) implies that 
for any polynomial q we have 

tr q(U~)= tr q(V~,) (15) 

A matrix A is equal to zero if and only if tr(AB) = 0 for any matrix B. Since 
p(U~)#O there exists a matrix B such that t r [ U ~ B ] # 0 .  Since the 
operators U~, l<<.k, l<<.n, have no common invariant subspace, the 
matrix algebra U is irreducible; hence, by Burnside's Theorem (Ref. 3, 
p. 182), U = M .  Thus, B=q(U~) for some polynomial q. Hence, 
tr[p(U~)q(U~)]#O, therefore, by (15), t r[p(V~)q(V~)]#O contrary 
to the assumption that p(V~)= O. 

We have shown that the correspondence (12) uniquely extends to the 
homomorphism f of matrix algebras. Since U = M and f, by definition, is 
onto, V = M and f is an automorphism of the full matrix algebra. By 
Skolem's Theorem (cf. Ref. 7, p. 99), any automorphism of the full matrix 
algebra is an inner automorphism, i.e., there exists an invertible matrix 
R ~ M such that for all X6 M 

f ( X )  = RXR -~ (16) 

which implies (7) and finishes the proof. 

Corol la ry  1. Let assumption 1 of the Theorem be satisfied. If the 
operator R satisfying (7) exists, then it is unique up to a scalar factor. 

Proof. Let R~ and R2 be two operators satisfying (7). They define the 
automorphisms f~:X--* R 1 X R (  1 and f2: X ~  R z X R 2  1 of the full matrix 
algebra M. The automorphism f l  f s  defined by R~Ry ~ does not change 
the operators U~, 1 ~<k,l~<n. Since these operators generate 
M, f l f  s ~ =Id. Thus, R1Ry I commutes with any X ~ M ,  that is, R~R21 is 
a scalar matrix. 
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Remarks. 1. We call (7) the Baxter condition. When n = m = m ' = 2  
it becomes (9.6.7) in Ref. 1.2. Assertion 2 of Theorem 1 is of course well- 
known and is included only for completeness. 

Proof of  Lemma. Using (3) and the definition of Boltzmann matrices 
we have for any two N tuples (k~,..., kN) and (l~,..., IN) (we omit the sub- 
script N in TN and T;v). 

(T'T)~,....~u= Z T ' a  'NTP,  P~ 
~z PI,...,PN Jt kl , , . . ,kN 

Pl,...,PN 

= ~ tr[W'~, . . .W'#'] tr[W~, ku" 
Pl,...,PN 

Interchange the order of summation in the last expression, and do sum- 
mation over p first (p, i, and i' denote the multiindices). We have 

~. tk l , . . . , kN kl  ~, 1,  i 2 . ~  ) ]  "" 
i' i p 

[- |;brtlN [ ;I  
X L " , N K ' N ,  il) WeN(;kNt'N, i~)] 

Using (6) we rewrite (17) as 

(17) 

(T'T)~I..... ~u = Z  V~,(i,, .,,"'i2,, i'2) ... VtkUu(iN, bY," " i,, q)" 
i,i" 

= tr[ V~,... V~ u] 

which proves (9). Switching the order of T and T' we obtain (8). 

3. B A X T E R  C O N D I T I O N  A N D  Y A N G - B A X T E R  E Q U A T I O N  

We start by introducing new notation. The space of linear operators 
on a vector space E is denoted by M(E). Let E, E', and F be vector spaces 
and let W e  M (F |  W ' e M ( F |  There is a bilinear operation 
(pairing) 

(W, W')~  W ,  W' 6 M ( F | 1 7 4  (18) 
F 

To define the pairing (18) we choose a basis {fk, 1 <~k<<.n} in F. Then W 
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and W' correspond to the n z operators W~eM(E) (resp. ,l W ~ ~ M(E')), 
1 ~< k, l ~< n, by the formulas 

and 

respectively. We set 

W ( A |  ~ f / |  W~e 
/=1 

W ' ( A |  ~ f t@ W'~e' 
l = l  

( W , W ) k = ' '  ~ Wlp| k'p (19) 
F p ~ l  

The rt 2 operators (W*FW')lkeM(E| ') determine the operator 
W*F W'eM(FNE@E').  It is not hard to check that W*e W' does not 
depend on the choice of basis in F. One can think of the pairing (18) as the 
convolution with respect to F indices. 

Another way to describe this pairing is to extend W and W' to 
operators on F@E| by identity on the third, respectively, second, 
factor. Denote the extended operators by W12 , Wt13~M(F|174 
respectively. It is straightforward to see that our pairing satisfies 

W * W' = W12 Wi3 (20) 
F 

The same way we define W' *F W~-M(F| E'| E) which, after the natural 
identification of E' | E with E |  E', becomes an element of M(F| E| E'). 
Then we have 

m" �9 W = Wi3 W12 (21) 
F 

Now let Re M(E| We extend R to an element of M(F|174 by 
identity on the first factor and denote the result by R23. 

P r o p o s i t i o n  1. The Baxter condition (7) on the Boltzmann 
matrices We M(F| E), W' ~ M(F| E') is equivalent to 

i~23 Wrl3 W12 = W12 Wr13R23 (22) 

Proof. It suffices to notice that the operators U~, V~eM(E| 
I 1  m l defined by (5) and (6) are equal to (W*e  W )k and (W' *e )k, respec- 

tively. 
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Let F be as above and let G be an arbitrary vector space. The algebra 
M(F| naturally contains M(G) as the subalgebra of operators on 
F |  G, which are identity on the first factor. Choosing a basis in F we iden- 
tify M(F| G) with the algebra M[n, M(G)] of n x n matrices with entries 
in M(G). The subalgebra M(G) corresponds in this representation to the 
scalar n x n matrices. We call such matrices F-scalar. Thus, M(G) imbeds 
into M(F| G) as the subalgebra of F-scalar matrices. The definition does 
not depend on the choice of basis in F; thus we can talk about F-scalar 
operators on F |  G. 

Definition. An operator We M(F| is said to be in general 
position (with respect to F) if the only F-scalar operators commuting with 
W are scalar operators. In this language, we have the following result. 

Theorem 2. Let W e M ( F Q E )  and W'eM(F|  be the 
Boltzmann matrices of two vertex models, where F ~- C n, E ~- C m, E'~_ C m'. 
Consider the operators W'~3 W12 and W12 W'~3 belonging to M(F| E|  E'). 
If either W'~3 W~2 or W~2 W',3 are in general position then the Baxter con- 
dition 

R23 W'13 W12 = W12 WI3 R23 

is necessary and sufficient for the commutativity of the transfer matrices T N 

and T~v for all N. 

Proof. Let G be any vector space, let AeM(F|  and let A~, 
1 <~k,l~n, be defined as above. By Schur's Lemma, A is in general 
position if and only if the operators A~ have no nontrivial common 
invariant subspace. It remains to set G = E |  and notice that 
( , l W13W12)~ U~ and (W12 ' t = W13)e= V~. The assertion now follows from 
Theorem 1. 

Assume now that F =  E =  E ' -  ~ C" and that we have a one-parameter 
family A(z)eM(C"|  ~) of Boltzmann matrices. The Yang-Baxter 
equation (see, e.g., Refs. 2, 8, 11) is 

A23(u - v) A 13(u) A12(v) = A,2(v) A13(u) Az3(U - -  V) (23) 

Proposition 2. If (23) is satisfied for some u and v, then the trans- 
fer matrices Tu(u ) and Tu(v) corresponding to A(u) and A(v), respectively, 
commute. 

Proof. Equation (23) implies (22) with W'=A(u), W=A(v), and 
R = A ( u - v ) .  

822/44/1-2-14 



202 Gutkin 

CONCLUSION 

The Baxter condition (22) which is sufficient for the commutativity of 
the transfer matrices T u and T~v (for all N) of two vertex models with the 
Boltzmann matrices W and W', respectively, is also necessary under a cer- 
tain technical assumption on W and W'. The Yang-Baxter equation (23) is 
much stronger than (22) and therefore it should not, in general, be 
necessary for the commutativity of T N and TN. 
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